Homework 10

$$
\mathrm{P} 10.9 \quad \mathbf{I}_{g}=40 \underline{00^{\circ}} \mathrm{mA}
$$

$$
j \omega L=j 10,000 \Omega ; \quad \frac{1}{j \omega C}=-j 10,000 \Omega
$$

$$
\begin{aligned}
& \mathbf{I}_{o}=\frac{j 10,000}{5000}\left(40 \underline{00^{\circ}}\right)=80 / 90^{\circ} \mathrm{mA} \\
& P=\frac{1}{2}\left|\mathbf{I}_{o}\right|^{2}(5000)=\frac{1}{2}(0.08)^{2}(5000)=16 \mathrm{~W} \\
& Q=\frac{1}{2}\left|\mathbf{I}_{o}\right|^{2}(-10,000)=-32 \mathrm{VAR} \\
& S=P+j Q=16-j 32 \mathrm{VA} \\
& |S|=35.78 \mathrm{VA}
\end{aligned}
$$

$\mathrm{P} 10.13 Z_{\mathrm{f}}=-j 10,000 \| 20,000=4000-j 8000 \Omega$

$$
\begin{aligned}
& Z_{\mathrm{i}}=2000-j 2000 \Omega \\
& \therefore \quad \frac{Z_{\mathrm{f}}}{Z_{\mathrm{i}}}=\frac{4000-j 8000}{2000-j 2000}=3-j 1 \\
& \mathbf{V}_{o}=-\frac{Z_{\mathrm{f}}}{Z_{\mathrm{i}}} \mathbf{V}_{g} ; \quad \mathbf{V}_{g}=1 \angle 0^{\circ} \mathrm{V} \\
& \mathbf{V}_{o}=(3-j 1)(1)=3-j 1=3.16 \angle-18.43^{\circ} \mathrm{V} \\
& P=\frac{1}{2} \frac{V_{m}^{2}}{R}=\frac{1}{2} \frac{(10)}{1000}=5 \times 10^{-3}=5 \mathrm{~mW}
\end{aligned}
$$

P 10.21

$2400 \mathbf{I}_{1}^{*}=60,000+j 40,000$
$\mathbf{I}_{1}^{*}=25+j 16.67 ; \quad \therefore \quad \mathbf{I}_{1}=25-j 16.67 \mathrm{~A}(\mathrm{rms})$
$2400 \mathbf{I}_{2}^{*}=20,000-j 10,000$
$\mathbf{I}_{2}^{*}=8.33-j 4,167 ; \quad \therefore \mathbf{I}_{2}=8.33+j 4.167 \mathrm{~A}(\mathrm{rms})$
$\mathbf{I}_{3}=\frac{2400 / 0^{\circ}}{144}=16.67+j 0 \mathrm{~A} ; \quad \mathbf{I}_{4}=\frac{2400 / 0^{\circ}}{j 96}=0-j 25 \mathrm{~A}$
$\mathbf{I}_{g}=\mathbf{I}_{1}+\mathbf{I}_{2}+\mathbf{I}_{3}+\mathbf{I}_{4}=50-j 37.5 \mathrm{~A}$
$\mathbf{V}_{g}=2400+(j 4)(50-j 37.5)=2550+j 200=2557.83 / 4.48^{\circ} \mathrm{V}(\mathrm{rms})$

P 10.25 [a] $\mathbf{I}=\frac{465 / 0^{\circ}}{124+j 93}=2.4-j 1.8=3 /-36.87^{\circ} \mathrm{A}(\mathrm{rms})$

$$
P=(3)^{2}(4)=36 \mathrm{~W}
$$

[b] $Y_{\mathrm{L}}=\frac{1}{120+j 90}=5.33-j 4 \mathrm{mS}$

$$
\therefore \quad X_{\mathrm{C}}=\frac{1}{-4 \times 10^{-3}}=-250 \Omega
$$

[c] $Z_{\mathrm{L}}=\frac{1}{5.33 \times 10^{-3}}=187.5 \Omega$
[d] $\mathbf{I}=\frac{465 / 0^{\circ}}{191.5+j 3}=2.43 \angle-0.9^{\circ} \mathrm{A}$

$$
P=(2.43)^{2}(4)=23.58 \mathrm{~W}
$$

[e] $\%=\frac{23.58}{36}(100)=65.5 \%$
Thus the power loss after the capacitor is added is 65.6% of the power loss before the capacitor is added.

P 10.38 [a] First find the Thévenin equivalent:

$$
\begin{aligned}
j \omega L & =j 3000 \Omega \\
Z_{\mathrm{Th}} & =6000 \| 12,000+j 3000=4000+j 3000 \Omega \\
\mathbf{V}_{\mathrm{Th}} & =\frac{12,000}{6000+12,000}(180)=120 / 0^{\circ} \mathrm{V} \\
\frac{-j}{\omega C} & =-j 1000 \Omega
\end{aligned}
$$

$\mathbf{I}=\frac{120}{6000+j 2000}=18-j 6 \mathrm{~mA}$
$P=\frac{1}{2}|\mathbf{I}|^{2}(2000)=360 \mathrm{~mW}$
[b] Set $C_{o}=0.1 \mu \mathrm{~F}$ so $-j / \omega C=-j 2000 \Omega \quad j 3000-j 2000=j 1000 \Omega$ Set R_{o} as close as possible to

$$
R_{o}=\sqrt{4000^{2}+1000^{2}}=4123.1 \Omega
$$

$$
\therefore \quad R_{o}=4000 \Omega
$$

$[\mathbf{c}] \mathbf{I}=\frac{120}{8000+j 1000}=14.77-j 1.85 \mathrm{~mA}$

$$
P=\frac{1}{2}|\mathbf{I}|^{2}(4000)=443.1 \mathrm{~mW}
$$

Yes; $\quad 443.1 \mathrm{~mW}>360 \mathrm{~mW}$
[d] $\mathbf{I}=\frac{120}{8000}=15 \mathrm{~mA}$

$$
P=\frac{1}{2}(0.015)^{2}(4000)=450 \mathrm{~mW}
$$

[e] $R_{o}=4000 \Omega ; \quad C_{o}=66.67 \mathrm{nF}$
[f] Yes; $\quad 450 \mathrm{~mW}>443.1 \mathrm{~mW}$

